Wafer-scale nanopatterning and translation into high-performance piezoelectric nanowires.
نویسندگان
چکیده
The development of a facile method for fabricating one-dimensional, precisely positioned nanostructures over large areas offers exciting opportunities in fundamental research and innovative applications. Large-scale nanofabrication methods have been restricted in accessibility due to their complexity and cost. Likewise, bottom-up synthesis of nanowires has been limited in methods to assemble these structures at precisely defined locations. Nanomaterials such as PbZr(x)Ti(1-x)O(3) (PZT) nanowires (NWs)--which may be useful for nonvolatile memory storage (FeRAM), nanoactuation, and nanoscale power generation--are difficult to synthesize without suffering from polycrystallinity or poor stoichiometric control. Here, we report a novel fabrication method which requires only low-resolution photolithography and electrochemical etching to generate ultrasmooth NWs over wafer scales. These nanostructures are subsequently used as patterning templates to generate PZT nanowires with the highest reported piezoelectric performance (d(eff) ∼ 145 pm/V). The combined large-scale nanopatterning with hierarchical assembly of functional nanomaterials could yield breakthroughs in areas ranging from nanodevice arrays to nanodevice powering.
منابع مشابه
Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory
In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, t...
متن کاملEnergy harvesting performance of piezoelectric ceramic and polymer nanowires.
Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may poss...
متن کاملInvestigating Output Voltage and Mechanical Stability of a Piezoelectric Nanogenerator Based on ZnO Nanowire
The output of a piezoelectric nanogenerator based on ZnO nanowire is largely affected by the shape of nanowire. In order to obtain mechanically stable nanogenerator with high performance, the investigation of mechanical and electrical characteristics related to the nanowires and materials used in nanogenerators are of great interest and significance. This paper presents the various behavior of ...
متن کاملStudy of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods
The piezoelectric power generation from ZnO nanowire arrays grown on different substrates using different methods is investigated. ZnO nanowires were grown on n-SiC and n-Si substrates using both the high-temperature vapor liquid solid (VLS) and the low-temperature aqueous chemical growth (ACG) methods. A conductive atomic force microscope (AFM) is used in contact mode to defl ect the ZnO nanow...
متن کاملInvestigating Output Voltage and Mechanical Stability of a Piezoelectric Nanogenerator Based on ZnO Nanowire
The output of a piezoelectric nanogenerator based on ZnO nanowire is largely affected by the shape of nanowire. In order to obtain mechanically stable nanogenerator with high performance, the investigation of mechanical and electrical characteristics related to the nanowires and materials used in nanogenerators are of great interest and significance. This paper presents the various behavior of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 10 11 شماره
صفحات -
تاریخ انتشار 2010